Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
STAR Protoc ; 4(4): 102605, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976156

RESUMEN

Dynamic macromolecular complexes containing a large number of components are often difficult to study using conventional approaches, such as immunoblotting. Here, we present a protocol for the analysis of macromolecular complexes in near-native conditions using a flexible setup to suit different cellular targets. We describe analysis of human mitochondrial ribosome, composed of 82 proteins, in a standardized way using density gradient ultracentrifugation coupled to quantitative mass spectrometry and subsequent analysis of the generated data (ComPrAn). For complete details on the use and execution of this protocol, please refer to Páleníková et al.1 and Rebelo-Guiomar et al.2.


Asunto(s)
Ribosomas Mitocondriales , Humanos , Immunoblotting , Espectrometría de Masas , Sustancias Macromoleculares
2.
Nat Commun ; 14(1): 1009, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823193

RESUMEN

Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.


Asunto(s)
Factores de Transcripción , Pez Cebra , Niño , Animales , Humanos , Factores de Transcripción/genética , ARN Mitocondrial , Pez Cebra/genética , Pez Cebra/metabolismo , ADN Mitocondrial/genética , Transcripción Genética , Mutación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Nat Commun ; 13(1): 929, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177605

RESUMEN

Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2'-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Metilación , Metiltransferasas/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/metabolismo
4.
Nucleic Acids Res ; 49(10): 5798-5812, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34037799

RESUMEN

Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Secuencia de Aminoácidos , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunohistoquímica , Espectrometría de Masas , Mitocondrias/enzimología , Mitocondrias/genética , Biosíntesis de Proteínas/genética , Alineación de Secuencia
5.
Biochim Biophys Acta Bioenerg ; 1862(6): 148399, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592209

RESUMEN

Many cellular processes involve the participation of large macromolecular assemblies. Understanding their function requires methods allowing to study their dynamic and mechanistic properties. Here we present a method for quantitative analysis of native protein or ribonucleoprotein complexes by mass spectrometry following their separation by density - qDGMS. Mass spectrometric quantitation is enabled through stable isotope labelling with amino acids in cell culture (SILAC). We provide a complete guide, from experimental design to preparation of publication-ready figures, using a purposely-developed R package - ComPrAn. As specific examples, we present the use of sucrose density gradients to inspect the assembly and dynamics of the human mitochondrial ribosome (mitoribosome), its interacting proteins, the small subunit of the cytoplasmic ribosome, cytoplasmic aminoacyl-tRNA synthetase complex and the mitochondrial PDH complex. ComPrAn provides tools for analysis of peptide-level data as well as normalization and clustering tools for protein-level data, dedicated visualization functions and graphical user interface. Although, it has been developed for the analysis of qDGMS samples, it can also be used for other proteomics experiments that involve 2-state labelled samples separated into fractions. We show that qDGMS and ComPrAn can be used to study macromolecular complexes in their native state, accounting for the dynamics inherent to biological systems and benefiting from its proteome-wide quantitative and qualitative capability.


Asunto(s)
Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/metabolismo , Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Programas Informáticos , Humanos , Ribonucleoproteínas/metabolismo
6.
Elife ; 92020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31939735

RESUMEN

Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function.


Cells need to make proteins to survive, so they have protein-making machines called ribosomes. Ribosomes are themselves made out of proteins and RNA (a molecule similar to DNA), and they are assembled by other proteins that bring ribosomal components together and modify them until the ribosomes are functional.Mitochondria are compartments in the cell that are in charge of providing it with energy. To do this they require several proteins produced by the ribosomes. If not enough mitochondrial proteins are made, mitochondria cannot provide enough energy for the cell to survive.One of the proteins involved in modifying ribosomes so they are functional is called BUD23. People with certain diseases, such as Williams-Beuren syndrome, do not make enough BUD23; but it was unknown what specific effects resulted from a loss of BUD23.To answer this question, Baxter et al. first genetically removed BUD23 from human cells, and then checked what happened to protein production. They found that ribosomes in human cells with no BUD23 were different than in normal cells, and that cells without BUD23 produced different proteins, which did not always perform their roles correctly. Proteins in the mitochondria are one of the main groups affected by the absence of BUD23. To determine what effects these modified mitochondrial proteins would have in an animal, Baxter et al. genetically modified mice so that they no longer produced BUD23. These mice developed heart problems caused by their mitochondria not working correctly and being unable to provide the energy the heart cells needed, eventually leading to heart failure. Heart problems are common in people with Williams-Beuren syndrome.Many diseases arise when a person's mitochondria do not work properly, but it is often unclear why. These experiments suggest that low levels of BUD23 or faulty ribosomes may be causing mitochondria to work poorly in some of these diseases, which could lead to the development of new therapies.


Asunto(s)
Metiltransferasas , Mitocondrias , Miocitos Cardíacos/metabolismo , Ribosomas/metabolismo , Regiones no Traducidas 5'/genética , Células A549 , Animales , Composición de Base/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Embrión de Mamíferos , Femenino , Humanos , Masculino , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/citología , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/fisiología , Ribosomas/genética
7.
Nucleic Acids Res ; 47(19): 10267-10281, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31665743

RESUMEN

Post-transcriptional RNA modifications, the epitranscriptome, play important roles in modulating the functions of RNA species. Modifications of rRNA are key for ribosome production and function. Identification and characterization of enzymes involved in epitranscriptome shaping is instrumental for the elucidation of the functional roles of specific RNA modifications. Ten modified sites have been thus far identified in the mammalian mitochondrial rRNA. Enzymes responsible for two of these modifications have not been characterized. Here, we identify METTL15, show that it is the main N4-methylcytidine (m4C) methyltransferase in human cells and demonstrate that it is responsible for the methylation of position C839 in mitochondrial 12S rRNA. We show that the lack of METTL15 results in a reduction of the mitochondrial de novo protein synthesis and decreased steady-state levels of protein components of the oxidative phosphorylation system. Without functional METTL15, the assembly of the mitochondrial ribosome is decreased, with the late assembly components being unable to be incorporated efficiently into the small subunit. We speculate that m4C839 is involved in the stabilization of 12S rRNA folding, therefore facilitating the assembly of the mitochondrial small ribosomal subunits. Taken together our data show that METTL15 is a novel protein necessary for efficient translation in human mitochondria.


Asunto(s)
Metiltransferasas/genética , Mitocondrias/genética , Ribosomas Mitocondriales/química , ARN Ribosómico/genética , Citidina/genética , Humanos , Metilación , Mitocondrias/química , Fosforilación Oxidativa , Biosíntesis de Proteínas/genética , Pliegue del ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/química
8.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31045291

RESUMEN

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Genes Mitocondriales , Predisposición Genética a la Enfermedad , Mutación , Proteínas de Neoplasias/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , Alelos , Sustitución de Aminoácidos , Biomarcadores , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/terapia , Estudios de Cohortes , Activación Enzimática , Femenino , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Cinética , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenotipo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 429-446, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529456

RESUMEN

Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.


Asunto(s)
ADN Mitocondrial/genética , Epigénesis Genética , Procesamiento Postranscripcional del ARN , Transcriptoma , Animales , ADN Mitocondrial/metabolismo , Humanos
10.
Am J Hum Genet ; 103(6): 1045-1052, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526862

RESUMEN

We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.


Asunto(s)
Agresión/fisiología , Enanismo/genética , Variación Genética/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Microcefalia/genética , Adolescente , Animales , Niño , Drosophila melanogaster/genética , Exones/genética , Femenino , Técnicas de Inactivación de Genes/métodos , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , ARN Mensajero/genética , ARN de Transferencia/genética
11.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283131

RESUMEN

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Asunto(s)
Cardiomiopatías/enzimología , Cardiomiopatías/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación/genética , Transferasas de Grupos Nitrogenados/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Recién Nacido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocardio/patología , Miocardio/ultraestructura , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Fosforilación Oxidativa , Linaje , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250142

RESUMEN

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Asunto(s)
Edición Génica , Mitocondrias Cardíacas/genética , Enfermedades Mitocondriales/genética , Nucleasas con Dedos de Zinc/genética , Animales , ADN Mitocondrial/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias Cardíacas/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/terapia , Mutación/genética , Pronóstico , ARN de Transferencia/genética , Nucleasas con Dedos de Zinc/uso terapéutico
13.
Nat Commun ; 9(1): 1727, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712893

RESUMEN

Emerging gene therapy approaches that aim to eliminate pathogenic mutations of mitochondrial DNA (mtDNA) rely on efficient degradation of linearized mtDNA, but the enzymatic machinery performing this task is presently unknown. Here, we show that, in cellular models of restriction endonuclease-induced mtDNA double-strand breaks, linear mtDNA is eliminated within hours by exonucleolytic activities. Inactivation of the mitochondrial 5'-3'exonuclease MGME1, elimination of the 3'-5'exonuclease activity of the mitochondrial DNA polymerase POLG by introducing the p.D274A mutation, or knockdown of the mitochondrial DNA helicase TWNK leads to severe impediment of mtDNA degradation. We do not observe similar effects when inactivating other known mitochondrial nucleases (EXOG, APEX2, ENDOG, FEN1, DNA2, MRE11, or RBBP8). Our data suggest that rapid degradation of linearized mtDNA is performed by the same machinery that is responsible for mtDNA replication, thus proposing novel roles for the participating enzymes POLG, TWNK, and MGME1.


Asunto(s)
División del ADN , Replicación del ADN , ADN Mitocondrial/genética , Edición Génica/métodos , Mitocondrias/genética , Secuencia de Bases , Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Terapia Genética , Células HEK293 , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
Hum Mol Genet ; 26(21): 4257-4266, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973171

RESUMEN

Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation.


Asunto(s)
Síndrome MELAS/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Niño , ADN Mitocondrial/genética , Humanos , Síndrome MELAS/diagnóstico , Masculino , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mutación , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Saccharomyces cerevisiae/genética
15.
Am J Hum Genet ; 101(4): 525-538, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942965

RESUMEN

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto Joven
16.
Elife ; 62017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28745585

RESUMEN

Human mitochondria contain a genome (mtDNA) that encodes essential subunits of the oxidative phosphorylation system. Expression of mtDNA entails multi-step maturation of precursor RNA. In other systems, the RNA life cycle involves surveillance mechanisms, however, the details of RNA quality control have not been extensively characterised in human mitochondria. Using a mitochondrial ribosome profiling and mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) assay, we identify the poly(A)-specific exoribonuclease PDE12 as a major factor for the quality control of mitochondrial non-coding RNAs. The lack of PDE12 results in a spurious polyadenylation of the 3' ends of the mitochondrial (mt-) rRNA and mt-tRNA. While the aberrant adenylation of 16S mt-rRNA did not affect the integrity of the mitoribosome, spurious poly(A) additions to mt-tRNA led to reduced levels of aminoacylated pool of certain mt-tRNAs and mitoribosome stalling at the corresponding codons. Therefore, our data uncover a new, deadenylation-dependent mtRNA maturation pathway in human mitochondria.


Asunto(s)
Mitocondrias/genética , Poli A/genética , Poliadenilación , ARN Mensajero/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , ARN/genética , Exorribonucleasas/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo
17.
Trends Biochem Sci ; 42(8): 625-639, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28285835

RESUMEN

Perturbation of mitochondrial DNA (mtDNA) gene expression can lead to human pathologies. Therefore, a greater appreciation of the basic mechanisms of mitochondrial gene expression is desirable to understand the pathophysiology of associated disorders. Although the purpose of the mitochondrial gene expression machinery is to provide only 13 proteins of the oxidative phosphorylation (OxPhos) system, recent studies have revealed its remarkable and unexpected complexity. We review here the latest breakthroughs in our understanding of the post-transcriptional processes of mitochondrial gene expression, focusing on advances in analyzing the mitochondrial epitranscriptome, the role of mitochondrial RNA granules (MRGs), the benefits of recently obtained structures of the mitochondrial ribosome, and the coordination of mitochondrial and cytosolic translation to orchestrate the biogenesis of OxPhos complexes.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes Mitocondriales/genética , Mitocondrias/genética , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Animales , Humanos , Mitocondrias/metabolismo , Ribosomas Mitocondriales/química , Procesamiento Postranscripcional del ARN/genética
18.
J Biol Chem ; 292(11): 4519-4532, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28082677

RESUMEN

Mitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking. Here, we have applied a microscopy-based approach that has allowed us to identify novel components of the MRG proteome. Among these, we have focused our attention on RPUSD4, an uncharacterized mitochondrial putative pseudouridine synthase. We show that RPUSD4 depletion leads to a severe reduction of the steady-state level of the 16S mitochondrial (mt) rRNA with defects in the biogenesis of the mitoribosome large subunit and consequently in mitochondrial translation. We report that RPUSD4 binds 16S mt-rRNA, mt-tRNAMet, and mt-tRNAPhe, and we demonstrate that it is responsible for pseudouridylation of the latter. These data provide new insights into the relevance of RNA pseudouridylation in mitochondrial gene expression.


Asunto(s)
Transferasas Intramoleculares/metabolismo , ARN/metabolismo , Línea Celular , Humanos , Transferasas Intramoleculares/análisis , Transferasas Intramoleculares/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Mitocondrial , ARN Ribosómico 16S/metabolismo , ARN Interferente Pequeño/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo
19.
Nucleic Acids Res ; 44(16): 7804-16, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27466392

RESUMEN

Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.


Asunto(s)
ADN Mitocondrial/genética , Endonucleasas/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Dedos de Zinc , Línea Celular Tumoral , Citometría de Flujo , Dosificación de Gen , Humanos , ARN Catalítico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...